Noncontact Measurement and Detection of Instantaneous Seismic Attributes Based on Complementary Ensemble Empirical Mode Decomposition
نویسندگان
چکیده
Hilbert–Huang transform (HHT) is a popular method to analyze nonlinear and non-stationary data. It has been widely used in geophysical prospecting. This paper analyzes the mode mixing problems of empirical mode decomposition (EMD) and introduces the noncontact measurement and detection of instantaneous seismic attributes using complementary ensemble empirical mode decomposition (CEEMD). Numerical simulation testing indicates that the CEEMD can effectively solve the mode mixing problems of EMD and can provide stronger anti-noise ability. The decomposed results of the synthetic seismic record show that CEEMD has a better ability to decompose seismic signals. Then, CEEMD is applied to extract instantaneous seismic attributes of 3D seismic data in a real-world coal mine in Inner Mongolia, China. The detection results demonstrate that instantaneous seismic attributes extracted by CEEMD are helpful to effectively identify the undulations of the top interfaces of limestone.
منابع مشابه
A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملEmpirical mode decomposition based time-frequency attributes
This paper describes a new technique, called the empirical mode decomposition (EMD), that allows the decomposition of one-dimensional signals into intrinsic oscillatory modes. The components, called intrinsic mode functions (IMFs), allow the calculation of a meaningful multicomponent instantaneous frequency. Applied to a seismic trace, the EMD allows us to study the di erent intrinsic oscillato...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملEmpirical mode decomposition for seismic time-frequency analysis
Time-frequency analysis plays a significant role in seismic data processing and interpretation. Complete ensemble empirical mode decomposition decomposes a seismic signal into a sum of oscillatory components, with guaranteed positive and smoothly varying instantaneous frequencies. Analysis on synthetic and real data demonstrates that this method promises higher spectral-spatial resolution than ...
متن کاملA new algorithm for instantaneous F0 speech extraction based on Ensemble Empirical Mode Decomposition
In this work, a new instantaneous fundamental frequency extraction method is presented, with the attention especially focused on its robustness for pathological voices processing. It is based on the Ensemble Empirical Mode Decomposition (EEMD) algorithm, which is a completely datadriven method for signal decomposition into a sum of AM FM components, called Intrinsic Mode Functions (IMFs) or mod...
متن کامل